Contribution from the Laboratoire de Chimie Théorique, Université de Paris-Sud, 91405 Orsay, France, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Band Electronic Structure Study of the Structural Modulation in the Magndi Phase $Mo₈O₂₃$

Enric Canadell^{*,†} and Myung-Hwan Whangbo^{*,†}

Receiced Norember 14, I989

We examined the cause for the 0.5b* superlattice modulation in the Magneli phase Mo₈O₂₃ by performing tight-binding band electronic structure calculations on Mo_8O_{23} , which consists of perovskite Mo_4O_{15} layers linked by Mo_4O_{14} chains. Our study shows that Mo_8O_{23} is a semimetal and does not possess a half-filled band dispersive along the b^* direction. Thus, the superlattice modulation is not caused by an electronic instability associated with Fermi surface nesting. The most likely cause for the superlattice modulation is a concerted pairwise rotation of $MoO₆$ octahedra in the perovskite $Mo₄O₁₅$ layers.

Recently, a number of binary and ternary molybdenum oxides have been studied in connection with their low-dimensional metallic character and their associated physical properties.] For instance, ternary oxides, blue bronze $A_{0,3}MO_{3}$ (A = K, Rb, Tl),² purple bronze $A_{0.9}Mo_6O_{17}$ (A = Li, Na, K, Tl),^{3,4} and rare-earth bronze $La₂Mo₂O₇⁵$ are all low-dimensional metals at room temperature and exhibit resistivity anomalies at low temperatures. Resistivity anomalies of low-dimensional metals are typically caused by the fact that their band electronic structures possess electronic instabilities originating from Fermi surface nesting. Thus, band electronic structure calculations⁶ have become an indispensable tool in understanding the physical properties of molybdenum oxide metals.

Like the ternary oxide metals, binary oxide metal Mo_4O_{11} also shows a resistivity anomaly at low temperature.⁷ This anomaly stems from a charge density wave (CDW) formation, as confirmed by the observation of diffuse spots in neutron and diffuse X-ray diffraction measurements.^{7e} The observed CDW vector of Mo₄O₁₁ is in excellent agreement with the nesting vector of the calculated Fermi surface for Mo_4O_{11} .^{6e} The Magnéli phase Mo_4O_{11} is a member of the binary oxide family Mo_nO_{3n-1} (e.g., *n* = 4, 8, 9).^{7,8} The Magneli phase $Mo₈O₂₃$ exhibits no superlattice spots above 360 K but shows incommensurate superlattice spots at q_{ic} = (0.195a*, **0.56*,** -0.120c*) between 360 and 285 K and commensurate superlattice spots at $q_c = (0, 0.5b^*, 0)$ below 285 K.⁹ The presence of the $0.5b^*$ component shows that the unit cell size of $Mo₈O₂₃$ doubles along the b-axis direction as the temperature is lowered below 360 **K.** According to the electronic instability argument based upon Fermi surface nesting, the 0.5b* component implies that Mo_8O_{23} has a half-filled band primarily dispersive along the *b** direction (i.e., *b* direction). However, this is rather unlikely: According to the usual oxidation formalism of O^{2-} . **Mo802,** has only two d electrons per formula unit to fill its 24 t_{2g} -block bands. Furthermore, the Magneli phase Mo₉O₂₆ also has two d electrons to fill its 27 t_{2g}-block bands, but it exhibits a superlattice modulation with a *0.56** component.IO In the present work, we show that the structural modulation of Mo_8O_{23} (5) does not originate from an electronic instability associated with Fermi surface nesting by performing tight-binding band calculations¹¹ on Mo_8O_2 , on the basis of its crystal structure determined at **370 K.** The atomic parameters employed in constructing our extended Hückel¹² tight-binding Hamiltonian are identical with those used in our previous studies⁶ on binary and ternary molybdenum oxides.

Crystal Structure

To describe the nature of the partially filled d-block bands of $Mo₈O₂₃$, which primarily govern its electronic properties, it is necessary to examine the crystal structure in some detail. The ideal structural pattern of Mo_8O_{23} can be described in terms of regular MoO₆ octahedra as follows: The MoO₅ chain 1 is obtained from $MoO₆$ octahedra upon sharing their axial oxygen (O_{ax})

atoms. Provided that the projection view of **1** along the chain is given by 2, the projection view 3 represents an $Mo₄O₁₄$ quadruple

- (1) Recent reviews: (a) Greenblatt, M. *Chem. Reu.* **1988, 88, 31.** (b) Schlenker, C., Ed. *Low-Dimensional Properties of Molybdenum Bronzes and Oxides;* Reidel: Dordrecht, The Netherlands, **1989.** (c) Whangbo, M.-H.; Canadell, E. *Acc. Chem. Res.* **1989, 22, 375.** (a) Ghedira, M.; Chenavas, J.; Marezio, M.; Marcus, J. *J. Solid State*
- *Chem.* **1985,57,300.** (b) Ganne, M.; Boumaza, A,; Dion, M.; Dumas, J. *Mater. Res. Bull.* 1985, 20, 1297. (c) Graham, J.; Wadsley, A. D.
Acta Crystallogr. 1966, 20, 93. (d) Pouget, J. P.; Kagoshima, S.;
Schlenker, C.; Marcus, J. *J. Phys. Lett.* 1983, 44, L133. (e) Fleming, R.; Schneemeyer, L. F.; Moncton, D. E. Phys. Rev. B. 1985, 31, 899.
(f) Tamegai, T.; Tsutsumi, K.; Kagoshima, S.; Kanai, Y.; Taui, M.;
Tomozawa, H.; Sato, M.; Tsuji, K.; Harada, J.; Sakata, M.; Nakajima, T. *Solid State Commun.* **1984**, 51, 585. (g) Pouget, J. P.; Noguera,
C.; Moudden, A. H.; Moret, T. J. *Phys. (Les Ulis., Fr.*) **1985**, 46, 1731.
(a) Vincent, H.; Ghedira, M.; Marcus, J.; Mercier, J.; Schlenker, C. J.
- *Solid State Chem.* **1983,** *47,* **113.** (b) Greenblatt, M.; Ramanujachary, K. V.; McCarroll, W. H.; Neifeld, R.; Waszczak, J. V. *J. Solid State Chem.* **1985,** *59,* **149.** (c) Ganne, M.; Dion, M.; Boumaza, **A,;** Tournoux, M. *Solid Stare Commun.* **1986, 59, 137.** (d) Ramanujachary, K. V.; Collins, B. T.; Greenblatt, M. *Solid State Commun.* **1986,** *59,* **647.** (e) Escribe-Filippini, C.; Konate, K.; Marcus, J.; Schlenker, C.; Almairac, R.; Ayroles, R.; Roucau, C. *Philos. Mag. B* **1984,** *50,* **321.**
- (a) Onoda, M.; Toriumi, K.; Matsuda, **Y.;** Sato, M. *J. Solid State Chem.* **1987,66, 163.** (b) Greenblatt, M.; McCarroll, W. H.; Neifeld, R.; Croft, M.; Waszczak, J. V. *Solid State Commun.* **1984,** *51,* **671.** (c) Schlenker, C.; Schwen, K. H.; Escribe-Filippini, C.; Marcus, J. *Physica* **1985,** *1358,* **51** I. (d) Matsuda, **Y.;** Onoda, M.; Sato, M. *Physica* **1986,** *14319,* **243.**
- (a) Moioni, A.; Subramanian, M.; Clearfield, A,; DiSalvo, F. J.; McCarroll, W. H. *J. Solid State Chem.* **1987**, 66, 136. (b) Collins, B.
T.; Greenblatt, M.; McCarroll, W. H.; Hull, G. W. *J. Solid State Chem.* **1988,** *73,* **507.**
- (a) Whangbo, M.-H.; Schneemeyer, **L.** F. *Inorg. Chem.* **1986,25,2424.** (b) Whangbo, M.-H.; Canadell, E.; Schlenker, C. *J. Am. Chem. Soc.*
1987, 109, 6308. (c) Whangbo, M.-H.; Canadell, E. J. *Am. Chem. Soc.*
1988, 110, 358. (d) Whangbo, M.-H.; Canadell, E. *Inorg. Chem.* 1987,
- 26, 842. (e) Canadell, E.; Whangbo, M.-H.; Schlenker, C.; Escribe-
Filippini, C. *Inorg. Chem.* 1989, 28, 1466.
(a) Ghedira, M.; Vincent, H.; Marezio, M.; Marcus, J.; Fourcadot, G.
J. Solid State Chem. 1985, 56, 66. (b) Ki *rials with Quasi-One-Dimensional Slructures;* Rouxel, **J.,** Ed.; Reidel: Dordrecht, The Netherlands, 1986; p 135. (e) Guyot, H.; Schlenker, C.; Pouget, J. P.; Ayroles, R.; Roucau, C. J. Phys. C 1985, 18, 427. (f) Guyot, H.; Schlenker, C.; Fourcadot, G.; Kontale, K. Solid State Compun. 1985, 54,
-
- C. **1986,** *19,* **3059.**

[†] Université de Paris-Sud.

^{&#}x27;North Carolina State University.

chain made up of four MoO_s chains by sharing the equatorial oxygen (O_{α}) atoms. In a similar manner, the projection view of $Mo₈O₂₃$ along the *b* axis is given by 4, which shows $Mo₄O₁₅$ slabs

5 linked by the Mo₄O₁₄ chains 3. The Mo₄O₁₅ slab 5 can be built

from the Mo_4O_{16} quadruple chains 6a. All the MoO_6 octahedra of the Mo₄O₁₅ slab are condensed by sharing their corners, so that the Mo_4O_1 ₅ slab has a perovskite structure. The Mo_4O_1 ₅ slab can also be considered as a stepped layer built from the Mo_4O_{17} chains 6b. The Magneli phase $M_{\text{O}_2\text{O}_{26}}$ contains the stepped layer $M_{\text{O}_3\text{O}_{18}}$ (7), which is built from the $Mo₅O₂₁$ quintuple chains **8**. In the

Magnéli phase $Mo₉O₂₆$, the $Mo₅O₁₈$ layers are linked by the $Mo₄O₁₄$ chains as in 4.

The crystal structure of Mo_8O_{23} determined at 370 K (i.e., the crystal structure without superlattice modulation) shows^{9a} that the MoO₆ octahedra are all distorted from an ideal, regular octahedron. Every MoO₆ octahedron of Mo₈O₂₃ shows a strong O-Mo- O bond alternation (e.g., Mo- $O = 1.69$ Å and Mo $\cdot \cdot \cdot O$ $= 2.37$ Å) along the *b* axis. Every Mo atom of MoO₆ is located slightly out of the four O_{eq} atom plane, as depicted in 9, where

the filled and empty circles represent the Mo atoms lying above and below the four O_{eq} atom planes, respectively. The senses of 0-Me-0 alternation at these two kinds of Mo atoms are opposite $(i.e., O-Mo...O$ at one and $O...Mo-O$ at the other) so that the unit cell of Mo_8O_{23} is given by $(Mo_8O_{23})_2$.

The Mo-O bonds associated with the O_{eq} atoms of the Mo₄O₁₄ chains 3 and the $Mo₄O₁₅$ slabs 5 are shown in 10 and 11, re-

spectively. Note that every $MoO₆$ octahedron of the $Mo₄O₁₄$ chain **3** has one short Mo-O_{eq} bond (less than 1.80 A), while that of the Mo_4O_{15} slab has $Mo-O_{eq}$ bonds longer than 1.82 A. Simply speaking, therefore, the $MoO₆$ octahedra of the $Mo₄O₁₅$ slab 5 have a distortion in which one Mo-O bond is shortened, and those of the Mo_4O_{14} chains 3 have a distortion in which two Mo-O bonds are shortened. This difference in the octahedral distortions has an important consequence upon the electronic properties of $Mo₈O₂₃$, as will be shown in the following.

Band Electronic Structure

A. Octahedral Distortion and t_{2s}-Block Level Splitting. As depicted in 12a, shortening of one Mo-O bond raises two π -type

⁽¹⁰⁾ Onoda, M.; Fujishita, H.; Matsuda, **Y.;** Sato, M. *Synth. Met.* **1987,** *19,* **947.**

⁽¹¹⁾ Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093.
(12) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. A modified Wolfsberg-Helmholz formula was used to calculate the off-diagonal *H,* values: Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. J. *Am. Cfiem. SOC.* **1978,** *100.* **3686.**

 t_{2a} -block levels (i.e., xz and *yz*) leaving behind one δ -type t_{2a} -block level (i.e., xy). (Here the δ and π levels are classified with respect to the shortened Mo-O bond.)^{1c,13} When an octahedral distortion shortens two cis Mo-O bonds, all three t_{2g} -block levels are raised in energy as shown in **12b.** For a molybdenum oxide lattice consisting of distorted $MoO₆$ octahedra, the lowest lying d-block bands originate from the octahedra with the lowest lying t_{2g} -block level. As discussed in the previous section, Mo_8O_{23} contains MoO_6 octahedra with one short Mo-O bond (in the Mo₄O₁₅ slabs 5) and those with two short Mo-O bonds (in the Mo_4O_{14} chains 3). Therefore, it is expected that the lowest lying d-block bands of $Mo₈O₂₃$ represent the $Mo₄O₁₅$ slabs, and only those bands are occupied because of the very low d-electron count in Mo_8O_{23} .

B. t_{2g} -Block Bands of the Mo₄O₁₅ Slab and the Mo₄O₁₄ Chain. To examine the effects of the O-Mo--O alternation upon band electronic structure, we consider an ideal MOO, chain **2** constructed from regular $MoO₆$ octahedra with $Mo-O = 1.956$ Å (i.e., the average Mo-O distance) and also a model $MoO₅$ chain **2** with the 0-Mo.-0 bond alternation of Mo-0 = 1.656 **A** and $M₀$ \sim O = 2.256 Å along the chain and with the Mo atom displaced from the four $O_{\epsilon q}$ atom plane along the chain direction by 0.3 Å. Parts a and b of Figure 1 show the t_{2e}-block bands calculated for the ideal and the model $MoO₅$ chains, respectively. Clearly, the O-Mo-O alternation raises the doubly degenerate π bands above the δ band. Figure 1c shows the t_{2g}-block bands of the Mo₄O₁₆ chain $6a$ constructed from four model $MoO₅$ chains mentioned above. The four flat bands a-d of Figure 1c are δ bands. Band a has the nodal property **13a,** bands b and c (degenerate) have the nodal properties **13b** and **13c,** respectively, and band d has the nodal property **13d.** Band a of Figure IC lies lower in energy than the bottom band of Figure 1b, since the shared O_{eq} corners of **3** do not have oxygen p-oribital contribution in **13a** by symmetry.

Figure 2a shows the bottom three (δ type) of the t_{2g}-block bands calculated for the real Mo₄O₁₆ chain 6a taken from the crystal structure of $Mo₈O₂₃$. The degeneracy between bands b and c is lifted due to the lowering of symmetry in the crystal structure. Figure 2b shows the bottom portion of the t_{2g} -block bands calculated for the real Mo_4O_1 , slab [with the unit cell formula of $(Mo_4O_{15})_2$] taken from the crystal structure of Mo_8O_{23} . Bands a_1 and a_2 (b₁ and b₂) of Figure 2b have the orbital character of band a (b) of Figure 2a. Bands a_1 and a_2 are dispersive along the c^* direction, and so are bands b_1 and b_2 , because the δ orbital (with respect to the b axis) at each $MoO₆$ octahedron is engaged in π -type interactions along the c-axis direction. For example,

Figure 1. Dispersion relations of the t_{2g} -block bands calculated for (a) the ideal MoO₅ chain 2, (b) the model MoO₅ chain 2 with O-Mo^{...}O alternation, and (c) the model Mo_4O_{16} chain 6a with O-Mo-··O alternation. $\Gamma = 0$, and $Y = b^*/2$.

Figure 2. Dispersion relations for the bottom portion of the t_{2g} -block bands calculated for (a) the real Mo_4O_{16} chain 6a and (b) the real Mo_4O_{15} slab 5. In (b), $\Gamma = (0, 0)$, $Y = (b*/2, 0)$, and $Z = (0, c*/2)$.

the nodal properties of bands a_1 and a_2 at Γ are given by 14a and **14b**, respectively, and those of bands b_1 and b_2 at Γ by **15a** and

15b. respectively. Bands c_1 and c_2 are not dispersive along the *c** direction, since the unit cell orbital **13c** practically does not have any orbital contribution at the shared O_{eq} atoms (between

⁽¹³⁾ (a) Whangbo, **M.-H.;** Evain, **M.;** Canadell, E.; Ganne, **M.** *Inorg. Chem.* **1989,28,267. (b)** Canadell, E.; Whangbo, **M.-H.** *Inorg. Chem.* **1988, 27, 288.**

properties of bands c_1 and c_2 at Γ , respectively. Bands a_1 and a_2 merge at Z, since by the changing of the relative phases between adjacent unit cells, band a_1 picks up but band a_2 removes the oxygen p-orbital contribution from the shared O_{ω} atoms between unit cells. Similarly, bands b_1 and b_2 merge at Z and so do bands c_1 and c_2 .

Figure 3 shows the bottom portion of the t_{2g} -block bands calculated for the real $Mo_{4}O_{14}$ quadruple chain 3 taken from the crystal structure of $Mo₈O₂₃$. With respect to the bottom bands of Mo_4O_{15} slab shown in Figure 2b, all d-block bands of the $Mo₄O₁₄$ chain are substantially raised in energy. This reflects the fact that the t_{2g}-block levels of the $MoO₆$ octahedra in the $Mo₄O₁₄$ chain are higher lying in energy because those octahedra have two short Mo-O bonds.

C. t_{2g} -Block Bands of Mo_8O_{23} . If there is no appreciable interaction between the Mo_4O_{15} slabs and the Mo_4O_{14} chains in $Mo₈O₂₃$, superposition of Figures 2b and 3 would be a good approximation for the t_{2g} -block bands of Mo₈O₂₃. With four d electrons per unit cell $(\tilde{Mo}_8O_{23})_2$, it is expected that only bands a_1 and a_2 of the Mo₄O₁₅ slabs are occupied and all d-block bands of the M04014 chains are unoccupied. Figure **4** shows the bottom portion of the t_{2e}-block bands calculated for the three-dimensional lattice of $Mo₈O₂₃$. As anticipated, these bands are essentially represented by the Mo_4O_{15} slabs. The t_{2g}-block bands representing the $Mo₄O₁₄$ chains lie well above the bands shown in Figure 4. Bands a_2 and b_1 are separated by a small band gap in an isolated $Mo₄O₁₅$ slab (Figure 2b) but overlap in a semimetallic manner in $Mo₈O₂₃$ (Figure 4).

Figure 3. Dispersion relations for the bottom portion of the t_{2g} -block, bands calculated for the real **M04014** chain **3.**

Figure 4. Dispersion relations for the bottom portion of the d-block bands calculated for Mo_8O_{23} . $\Gamma = (0, 0, 0), X = (a^*/2, 0, 0), Y = (0, b^*/2,$ 0), and $Z = (0, 0, c^*/2)$.

There are two important observations to note from Figure **4:** (a) $Mo₈O₂₃$ is predicted to be a semimetal and does not have a half-filled band dispersive along the *b** direction. **All** the bands of Figure **4** are not dispersive along the *b** direction, since they are largely based upon 6 orbitals with respect to the *b* axis. (b) Only the bottom d-block bands of the Mo_4O_{15} slabs are filled, while the d-block bands of the Mo_4O_{14} chains are empty. Consequently, the Mo atoms of the Mo_4O_{15} slabs should be lower in their formal oxidation states than those of the $Mo_{4}O_{14}$ chains (i.e., approximately, $Mo^{5.5+}$ for the Mo_4O_{15} slabs and Mo^{6+} for the Mo_4O_{14} chains). Zachariasen analysis¹⁴ for Mo_8O_{23} leads to an unreasonable result, since it predicts that all Mo atoms are nearly the same in their oxidation states (i.e., approximately $Mo^{5.75+}$).¹⁰

Superlattice Modulation

Our study shows that the Magneli phase Mo_8O_{23} is a semimetal and has two partially filled bands resulting primarily from its structural components $Mo₄O₁₅$ slabs. These two bands are not dispersive along the *b** and *a** directions but dispersive along the c^* direction. Namely, Mo_8O_{23} does not possess a half-filled band dispersive along the *b** direction, so that the *0.5b** component of the superlattice modulation in Mo_8O_{23} does not originate from an electronic instability associated with Fermi surface nesting. As suggested by Pouget,¹⁵ therefore, the cause for the $0.5b^*$ modulation is likely to be the well-known structural instability inherent in perovskite metal oxides, i.e., the concerted pairwise rotations of MO_6 octahedra within a layer of corner-shared MO_6 octahedra.¹⁶ As illustrated in 17 for an Mo₄O₁₇ quadruple chain 6b (see also **4** and **5),** rotation of an MOO, octahedron around an 0-Mo-0 axis (perpendicular to the chain direction *b* axis)

⁽¹⁴⁾ Zachariasen, W. H. *J. Less-Common Met.* **1978,** *62,* I.

⁽¹⁵⁾ Pouget, J. P. Reference 1b, p 87.
(16) (a) Shirane, G.; Yamada, Y. *Phys. Rev.* 1969, 177, 858. (b) Fuji, Y.;
Hoshino, S.; Yamada, Y.; Shirane, G. *Phys. Rev. B* 1974, 9, 4549. (c) Sato, M.; Crier, B. H.; Shirane, **G.;** Akahane, T. *Phys. Rev. B* **1982,** *25,* 6876.

induces a concerted pairwise rotation of all MoO₆ octahedra within the Mo_4O_{17} chain. This doubles the unit cell size along the *b* direction and accounts for the *O.Sb** component. Indeed, the crystal structure of Mo_8O_{23} determined at 100 K^{9a} and the inelatic neutron scattering data¹⁷ of $Mo₈O₂₃$ are consistent with the concerted pairwise octahedral rotation described above. We expect that the $0.5b^*$ structural modulation observed for $Mo₉O₂₆$ is also caused by the same mechanism.

We now discuss how the concerted pairwise rotations of the $Mo₄O₁₇$ chains can correlate with the commensurate and incommensurate modulations of the **M04015** slab and eventually the $Mo₈O₂₃$ lattice. The senses of the concerted rotations of adjacent **Mo401,** chains can be identical (the M3 type mode shown in **18a)** or opposite (the R₂₅ type mode shown in **18b**).^{16c} As shown in

Figure 5, the unmodulated Mo₄O₁₅ slab has several symmetry elements, i.e., the center of inversion, the 2-fold rotation, and the glide planes at $y = 0$ and $\frac{1}{2}$. The M₃ or R₂₅ mode of rotation lowers the symmetry of the lattice, so that the symmetry elements of the unmodulated structure may become incompatible with the superlattice modulation. As pointed out earlier, the senses of the $O-Mo$ alterations in adjacent $MoO₅$ octahedral chains of each **Mo4Ol7** chain are opposite (see *9* and the text). Because of this geometrical aspect, it can be shown that the commensurate superlattice modulation $q_c = (0, 0.5b^*, 0)$ is compatible with the presence of (a) the 2-fold rotation for the M_3 mode of rotation, (b) the glide plane at $y = 0$ for the R_{25} mode of rotation, and (c) the glide plane at $y = \frac{1}{2}$ for the M₃ mode of rotation. For the commensurate superlattice modulation, the rotational angles a-d are identical with $a''-d''$, respectively (Figure 5). Case c considered above does not place any constraining relationship among the angles a-d, among a' -d', or between a-d and a' -d'. This is not true with cases a and b. For instance, condition a means that a $= d$, $b = c$, $a' = d'$, and $b' = c'$. Therefore, case c is expected to induce less lattice strain than case a or b. Therefore, it is not surprising that case c is the one observed for the commensurate superlattice modulation of Mo_8O_{23} . An incommensurate superlattice modulation of an Mo_4O_{15} slab along the *c* direction implies that the variation of the ratios of successive rotational angles a/c , a"/c", etc. (see Figure *5)* follows an incommensurate wave pattern. The **Mo4015** slabs are linked by the **M04014** chains (see **3** and **4), so that the incommensurate modulation of an** $Mo₄O₁₅$ **slab** would cause different amounts of strain on the successive **MOq014** chains. This might cause an incommensurate modulation in the

(17) Fujishita, H.; Sato, **M.;** Shapiro, *S.* **M.:** Hoshino, *S. Physica E* **1986,** *143.* 201.

Figure 5. Schematic diagram of the unmodulated Mo_4O_{15} slab, showing the symmetry elements and the octahedral rotational angles (a-d, a'-d', and a"-d"). The thin horizontal lines distinguish successive unit cells, and the thick vertical lines refer to the rotational axes. The shaded octahedra are equivalent, and so are the unshaded octahedra. The filled and empty circles of octahedra signify that the senses of the O-Mo---O alternations along the *6* axis are opposite.

 $Mo₈O₂₃$ lattice along the *a* direction.

Concluding Remarks

The two partially filled bands of Mo_8O_{23} are nearly flat along the b^* direction, since they are constructed from the δ orbitals of MOO, octahedra with respect to the *b* axis. These bands are nearly flat along the *a** axis as well, since interactions between the Mo_4O_{15} slabs in Mo_8O_{23} occur indirectly via the Mo_4O_{14} chains (see 5), whose d-block levels lie well above the δ orbitals of the $Mo₄O₁₅$ slabs. Along the c^* direction, however, the two partially filled bands of Mo_8O_{23} are dispersive because the δ orbitals make n-type interactions along the c direction (see **14** and **15).** This explains why $Mo₈O₂₃$ does not have a half-filled band dispersive along the b^* direction and hence why its $0.5b^*$ superlattice modulation does not originate from an electronic instability associated with Fermi surface nesting. The most likely cause for the superlattice modulation would be the concerted pairwise rotation of $MoO₆$ octahedra in the perovskite slabs $Mo₄O₁₅$, as pointed out by Pouget.15 The anisotropic band dispersions of $Mo₈O₂₃$ also suggest that the electrical resistivities ρ along the a^* , *b*, and *c* directions would vary as $\rho_c \ll \rho_{a^*} \le \rho_b$. This prediction, though based upon the crystal structure of $Mo₈O₂₃$ determined at 370 K, would be valid for temperatures below room temperature, since the slight octahedral rotations in the $Mo₄O₁₅$ slabs are not expected to change the essential features of the $Mo₈O₂₃$ electronic structure described above. For example, the band electronic structures calculated for the real $Mo₄O₁₆$ chain **6a** and the real Mo_4O_{14} chain 3, taken from the crystal structure of Mo_8O_{23} determined at 100 K, are very similar to those calculated for the corresponding chains without structural modulation $(i.e., those in Figures 2a and 3, respectively) except that each band$ of the unmodulated structure splits into two bands with small energy difference by the structural modulation. Surprisingly, the available experimental data¹⁸ determined below room temperature show that $\rho_{a^*} < \rho_c < \rho_b$. Further studies are necessary to resolve the difference between theory and experiment concerning the relative magnitudes of ρ_{a^*} and ρ_c in Mo₈O₂₃.

Acknowledgment. This work was supported by NATO, Scientific Affairs Division, and also by DOE, Office of Basic Sciences, Division of Materials Sciences, under Grant DE-FGOS-**86ER45259.** We express our appreciation for computing time on the ER-Cray computer made available by DOE.

⁽I 8) (a) Sato, **M.;** Nakao, **K.;** Hoshino, *S. J. Phys.* **C 1984,** *17,* **L817.** (b) Gruber, H.; Krautz, **E.;** Fritzer, H. P.; Gatterer, **K.;** Popitsch, **A.** *Solid Stare Commum.* **1986,** *58,* 133.